
2. Finiteness of models

Question 2.1. Given a family π : X −→ B, can we find a family
ψ : Y −→ C such that C is uniruled (rationally connected?) and if Xb

is a Fano variety then we may find c ∈ C such that Yc is isomorphic
to Xb.

Roughly speaking the question asks if every component of the moduli
space of Fano varieties is uniruled (or rationally connected), except that
the moduli space does not really exist. For example, for del Pezzo’s
this is okay. E.g the del Pezzo’s of degree one are obtained by blowing
up eight points in P2 in general position, so that for C we may take an
open subset of the product of eight copies of P2. Similarly if one goes
through the list of Fano 3-folds, one can check this result case by case.

Definition 2.2. Let X be a normal variety. We say that X is Q-
factorial if every R-Weil divisor is R-Cartier.

Algorithm: MMP for varieties

(1) Start with a kawamata log terminal pair (X,∆), where X is a
Q-factorial projective variety.

(2) Is KX + ∆ nef? If yes, then stop.
(3) If not, then there is a rational curve C such that (KX+∆)·C < 0

and a contraction morphism π : X −→ Z, π(C) is a point,
ρ(X/Z) = ρ(X)− ρ(Z) = 1, with one of three possibilities:
(a) π is a Mori fibre space. dimZ < dimX, −(KX + ∆) is

ample over Z, stop.
(b) π is a birational morphism and the exceptional locus is a

divisor. In this case replace X by Z and return to (2).
(c) π is a birational morphism and the exceptional locus has

codimension at least two. In this case replace X by Y the
flip of π : X −→ Z and return to (2).

Definition 2.3. Let π : X −→ Z be a small birational morphism of
relative Picard number one. Suppose that (X,∆) is kawamata log ter-
minal, X is Q-factorial and −(KX + ∆) is ample over Z.

The flip of π is another small birational map ψ : Y −→ Z such that
KY + Γ is ample over Z, where Γ is the strict transform of ∆:

X
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Example 2.4. Let Z be the quadric cone,

(xt− yz = 0) ⊂ C4.

Note that there are two families of planes containing the origin, given
by taking the cone over a line of either ruling. Both divisors are Weil
divisors which are not Q-Cartier. There are two small resolutions,
fi : Xi −→ Z, which blow up either plane. The resulting birational map
X1 99K X2 is a flop. There is a rational curve Ci ⊂ Xi contracted down
to Z and KXi

·Ci = 0. To create a flip, simply pick up an ample divisor
H2 on X2 and take ∆ = εH1, where H1 is the transform of H2. Then
−(KX + ∆) is always ample over Z and if we choose ε > 0 sufficiently
small then (X,∆) is kawamata log terminal.

Note that if we blow up the vertex of the cone then the exceptional
divisor is a copy of P1 × P1 and X1 and X2 correspond to the two
rulings.

Remark 2.5. The steps of the MMP preserve the fact that (X,∆) is
kawamata log terminal and X is Q-factorial.

Note that now it is no longer so obvious that the MMP always ter-
minates. We cannot keep contracting divisors, but there might be an
infinite sequence of flips:

Conjecture 2.6. Let (X,∆) be a kawamata log terminal pair, where
X is projective, Q-factorial.

Then every sequence of flips terminates.

In terms of our original goal, even if know (2.6), we still need:

Conjecture 2.7 (Abundance conjecture). Let (X,∆) be a kawamata
log terminal pair, where X is a projective variety.

If KX + ∆ is nef then it is semiample.

The major sticking point is

Conjecture 2.8. Let X be a smooth projective variety.
Either

(1) X is uniruled, or
(2) the Kodaira dimension is not −∞.

Definition 2.9. Let X be a normal projective variety and let D be an
R-Weil divisor.

The section ring is the graded ring

R(X,D) =
⊕
m∈N

H0(X,OX(bmDc)).
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Suppose that the section ring is a finitely generated C-algebra. Then
there is a rational map

fD : X 99K Y

where Y = ProjR(X,D). Y is the image of X under some multiple of
D,

φmD : X 99K Y ⊂ PN .

If D = KX is big then Y is the canonical model. KY is ample and Y
has canonical singularities, that is, the log discrepancy is at least one.
One way to construct the canonical model, is to run the KX-MMP until
KX is nef. At this point the base point free theorem says that KX is
semiample and Y is the image of φmKX

, for m sufficiently large. Note
that if X1 and X2 are of general type then X1 and X2 are birational if
and only if the canonical models Y1 and Y2 are isomorphic. However
note that Y is in general note Q-factorial.

More generally, one can work with kawamata log terminal pairs
(X,∆), where KX + ∆ is big. In this case (Y,Γ) is kawamata log
terminal and KY + Γ is ample. The resulting map is called the log
canonical model. If the canonical ring is finitely generated then this
construction makes sense even if KX + ∆ is pseudo-effective.

Theorem 2.10. Suppose that (X,A + D = A +
∑
Di) is log smooth,

where X is a projective variety and A is an ample Q-divisor.
Then there are finitely many rational maps f1, f2, . . . , fk, fi : X 99K

Yi, such that if f : X 99K Y is the log canonical model of (X,∆ =
A+

∑
aiDi) then f = fi. Moreover the closure Pi of the set

{ (a1, a2, . . . , ak) ∈ [0, 1]k | fi is the log canonical model of (X,∆ =
∑

ai∆i) },

is a rational polytope.

More generally one can work with a normal Q-factorial variety X and
finitely many divisors ∆i such that (X,∆i) is kawamata log terminal.
Also one can go relatively easily from finiteness of log canonical models
to finiteness of minimal models.

Example 2.11. Let X = M g and let D =
∑
Di, the standard bound-

ary divisors. In this case various regions of the box

[0, 1]k where k = bg
2
c,

are decomposed into finitely many rational polytopes.
What does regions mean? Well to apply (2.10) one needs to peel off

an ample Q-divisor A. Note that we are allowed to use as small an
ample Q-divisor as want.

3



By an old result of Mumford, KX +D is ample on M g. So one can
play a game and write

KX + ∆ = a(KX +D) + b(KX + ∆′) = b(KX + A+ ∆′),

where A ∼Q a/b(KX + ∆) and 0 ≤ ∆′ ≤ ∆. If we want to fix A, that
is, if we want to fix a and provided ∆ > δD, for some fixed δ > 0.

In other words, if there are infinitely many log canonical models, then
they can only accumulate where at least one coefficient of the boundary
is zero.

But suppose that g ≥ 22. Then KX is big and if ∆ ≤ (1− ε)D then
we can write

KX + ∆ = ηKX + (1− η)(KX + ∆′),

where ∆ ≤ ∆′ ≤ D. If we fix η > 0 then we are again done.
In general we play similar games to prove (2.10). One key fact is

that [0, 1]k is compact, so it is enough to prove finiteness locally and
then invoke compactness.

It is interesting to note that we need the ample divisor.

Example 2.12 (Reid). Let X0 ⊂ C4 be the smooth threefold given by
the equation

y2 = ((x− a)2 − t1)((x− b)2 − t2),
where x, y, t1, t2 are coordinates on C4 and a 6= b are constants. Let X
be the closure of X0 in P1×P1×C2. Projection π : X −→ S = C2 down
to C2 with coordinates t1 and t2 realises X as a family of projective
curves of genus one over C2. If t1t2 6= 0 then we have a smooth curve
of genus one, that is, an elliptic curve. If t1 = 0 and t2 6= 0 or t2 = 0
and t1 6= 0 then we get a nodal rational curve (a copy of P1 with two
points identified). If t1 = t2 = 0 then we get a pair C1 ∪ C2 of copies
of P1 joined at two points.

One can check that both C1 and C2 can be contracted individually to
a simple node. Therefore we can flop either C1 or C2. Suppose that
we flop C1. Since C1 is contracted by π this flop is over S so that the
resulting threefold Y admits a morphism to ψ : Y −→ S = C2. We
haven’t changed the morphism π outside s and one can check that the
fibre over s = (0, 0) of ψ is a union D1 ∪D2 of two copies of P1 which
intersect in two different points. Once again we can flop either of these
curves. Suppose that D2 is the strict transform of C2 so that D1 is the
flopped curve. If we flop D1 then we get back to X but if we flop D2

then we get another threefold which fibres over S. Continuing in this
way we get infinitely many threefolds all of which admit a morphism to
S and all of which are isomorphic over the open set S − {s}. Let G
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be the graph whose vertices are these threefolds, where we connect two
vertices by an edge if there is a flop between the two threefolds over S.
Let G′ be the graph whose vertices are the integers where we connect
two vertices i and j if and only if |i − j| = 1. Then G and G′ are
isomorphic.

There are examples due to Kawamata of Calabi-Yau threefolds with
infinitely many models.

Algorithm: MMP with scaling

(1) Start with a kawamata log terminal pair (X,∆+D), where X is
a Q-factorial projective variety, ∆ is big, such that KX +∆+D
is nef.

(2) Let

λ = inf{ t ∈ [0, 1] |KX + ∆ + tD is nef. }
Is λ = 0? If yes, then KX + ∆ is nef, stop.

(3) If not, then there is a rational curve C such that D · C > 0,
(KX+∆+λD)·C = 0 and a contraction morphism π : X −→ Z,
π(C) is a point, ρ(X/Z) = ρ(X)− ρ(Z) = 1, with one of three
possibilities:
(a) π is a Mori fibre space. dimZ < dimX, −(KX + ∆) is

ample over Z, stop.
(b) π is a birational morphism and the exceptional locus is a

divisor. In this case replace X by Z and return to (2).
(c) π is a birational morphism and the exceptional locus has

codimension at least two. In this case replace X by Y the
flip of π : X −→ Z and return to (2).

Note that the MMP with scaling always terminates, using finiteness
of minimal models. Indeed, every step of this MMP we get a minimal
model
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