
Morphisms of complex tori and abelian varieties

Exercise 1. Homomorphisms of complex tori. Let X1 = V1/Λ1 and X2 = V2/Λ2 be two complex

tori (Vi are complex vector spaces and Λi ⊂ Vi are lattices, i.e. discrete subgroups of maximal rank). Let

f : X1 → X2 be a holomorphic map.

(a) Show that there exists an affine map f̃ : V1 → V2, that induces f . (Hint: use Liouville Theorem).

(b) The composition h := t−f(0) ◦f is a homomorphism of groups (tx0
(x) = x+x0 is the translation).

The injective homomorphism Hom(X1, X2) → HomC(V1, V2) which sends h 7→ h̃ is called the

analytic representation of Hom(X1, X2).

(c) If we consider h : X1 → X2, then h(X1) is a subtorus of X2 and the connected component

(kerh)0 passing through 0 of kerh is a subtorus of X1. kerh/(kerh)0 is a finite group and

dimX1 = dim(kerh)0 + dim imh.

(d) Show that Hom(X1, X2) ∼= Zm for some m 6 4 dimX1 · dimX2. (Hint: use the rational repre-

sentation Hom(X1, X2)→ HomZ(Λ1,Λ2)).

Line bundles on complex tori

Exercise 2. Factors of automorphy and line bundles on complex tori. Let X = V/Λ be a

complex torus. A holomorphic map f : Λ× V → C∗ satisfying f(λ+µ, v) = f(λ, v+µ)f(µ, v) is called a

factor of automorphy. Given an automorphy factor f we can define the following action of Λ on V ⊕ C,

Λ 3 λ : (v, t) 7→ (v + λ, f(λ, v) · t)

The quotient L = (V ⊕ C)/Λ is well-defined, and it is a line bundle over X. (This is a particular case

of the isomorphism H1(π1(X), H0(X̃,O∗
X̃

))→ ker(H1(X,O∗X)
π∗→ H1(X̃,O∗

X̃
)), where π : X̃ → X is the

universal cover of X.)

(a) Let h : V → C∗ be a holomorphic function. Show that h(v + λ)h(v)−1 is a factor of automorphy

that defines the trivial line bundle on X (the cycles of this type are called coboundaries).

(b) Show that H2(X,Z) ∼= Alt2(Λ,Z) = group of Z-valued alternating 2-forms on Λ. (Hint: Use

Künneth formula).

Consider the exponential exact sequence 0 → Z → OX → O∗X → 0. One one hand, it gives us the

following exact sequence 0 → Z → H0(V, π∗OX)
e2πi→ H0(V, π∗O∗X) → 0. On the other hand, if we

consider the coboundary maps of the cohomological long exact sequences, they are compatible through

the following commutative diagram:

H1(Λ, H0(V, π∗O∗X))
δ //

∼=
��

H2(Λ,Z)

∼=
��

PicX ∼= H1(X,O∗X)
δ=c1 //H2(X,Z) ∼= Alt2(Λ,Z)

Therefore, given a factor of automorphy f = e2πig defining L ∈ PicX, the first Chern class c1(L) can be

described in Alt2(Λ,Z) as

EL(λ, µ) = g(µ, v + λ) + g(λ, v)− g(λ, v + µ)− g(µ, v) for all v ∈ V.

(c) Show that EL is well-defined, i.e., the definition does not depend on v ∈ V .
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(d) Show that EL(Λ,Λ) ⊆ Z and after extending EL R-linearly, we get EL(iv, iw) = EL(v, w) for all

v, w ∈ V . (Hint: Use that the map H2(X,Z) → H2(X,OX) factorizes through H2(X,C), the

Hodge decomposition and the isomorphism Hq(X,ΩpX) ∼= ∧pT ⊗ ∧qT , where T = HomC(V,C).)

(e) There is a 1-1 correspondence between the set of hermitian forms H on V and the set of real

valued alternating forms E on V satisfying E(iv, iw) = E(v, w). (Note: With the convention

H(v, w) = E(iv, w) + iE(v, w), the hermitian forms become holomorphic on the first factor).

(f) Show that E is non-degenerate if, and only if, H is non-degenerate.

Recall that the image of c1 is called the Neron-Severi group NSX of X. A semicharacter for an hermitian

form H ∈ NSX is a map χ : Λ→ U(1) = {z ∈ C |z| = 1} such that

χ(λ+ µ) = χ(λ)χ(µ)eiπImH(λ,µ),

so when H = 0 it is a character.

(g) Given (H,χ), where χ is a semicharacter (s.c.) for H ∈ NSX.Show that

a(H,χ)(λ, v) := χ(λ)eπH(v,λ)+π
2H(λ,λ)

is a factor of automorphy (it is usually called canonical factor of (H,χ)).

(h) Check that the following diagram commutes:

{(H,χ)}χ s.c. of H∈NSX

p1 //

ψ

��

NSX

PicX
c1 // NSX,

where ψ(H,χ) = a(H,χ).

(h) Finally to show the Appell-Humbert theorem, i.e. the following diagram:

0 // Hom(Λ, U(1))

φ

��

// {(H,χ)}χ s.c. of H∈NSX

p1 //

ψ

��

NSX // 0

0 // Pic0X // PicX
c1 // NSX // 0,

we need to show that φ is an isomorphism (Hint: Consider Pic0X ∼= Im (H1(X,OX) →
H1(X,O∗X)) ∼= Im (H1(X,C)

ε→ H1(X,O∗X)), where ε is given by C e2πi ·−→ C∗ ⊆ O∗X . This

shows that L ∈ Pic0X can be represented by a factor of automorphy f(λ, v) independent of

v ∈ V .)

Exercise 3. Sections of line bundles. Let X = V/Λ be a complex torus of dimension g that admits

a positive definite hermitian form H such that H(Λ,Λ) ⊆ Z. Let E = ImH be the corresponding

alternating form. There exists a basis of Λ (called symplectic basis of Λ) such that E is given by the

matrix (
0 D

−D 0

)
,

where D = diag(d1, . . . , dg) with integers di > 0 and di|di+1. This induces a decomposition Λ = Λ1⊕Λ2.

Let Vi the R-linear span of Λi so V = V1 ⊕ V2.

(a) Let be χ0 : V → C such that χ0(v) = eπiE(v1,v2). Show that it is a semicharacter for H.
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(b) Show that Λ2 ⊗ C = V . Let B : V × V → C the C-bilinear extension of the real symmetric form

H|V2×V2
. Show that (H −B)(v, w) = 0 if w ∈ V2 and (H −B)(v, w) = 2iE(v, w) if v ∈ V2.

If f is a factor of automorphy of a line bundle L, then the space of sections H0(X,L) of L can be identified

naturally with the sections of the trivial bundle C × V → V , that are invariant under the action of Λ,

that is, the set of holomorphic functions ϑ : V → C such that

(1) ϑ(v + λ) = f(λ, v)ϑ(v).

In the setting of the previous exercise, consider the line bundle L given by the Appell-Humbert data

(H,χ0).

(c) Assume that the following series is well-defined and absolutely convergent (this relies on the fact

that Re(H −B) is positive definite on V1)

ϑH(v) = e
π
2B(v,v)

∑
µ∈Λ1

eπ(H−B)(v,µ)−π2 (H−B)(µ,µ).

Show that ϑH satisfies (1) for the canonical factor of automorphy f = a(H,χ0).

Matrix presentations

Exercise 4. Riemann relations. Let X = V/Λ be a complex torus of dimension g that admits a

positive definite hermitian form H such that H(Λ,Λ) ⊆ Z. Let λ1, . . . , λg, µ1, . . . , µg a symplectic basis

of Λ for E = ImH. i.e. with respect to this basis E is given by
(

0 D
−D 0

)
where D = diag (d1, . . . , dg).

(a) Let ej = 1
dj
µj , for j = 1, . . . , g. Show that {ej}j forms a basis of V (Hint: This is (b) of the

previous Exercise). Denote Π = (Z,D) and observe that X = Cg/ΠZ2g.

(b) Show that tZ = Z and ImZ > 0. (This are the Riemann relations with a symplectic basis).

(c) (ImZ)−1 is the matrix of H with respect to e1, . . . , eg.

(d) Let D = id, then in the setting of the previous Exercise, Λ1 = Z × Zg and Λ2 = Zg, and also

V1 = ZRg and V2 = Rg. So w ∈W , can be written as w = Zw1+w2. Then the symmetric bilinear

form B defined in (b) can be computed as B(v, w) = tv(ImZ)−1w and (H −B)(v, w) = −2itvw1.

So

ϑH(v) = e
π
2
tv(ImZ)−1v

∑
η∈Zg

eπi(2
tvη+tηZη).

(Hint: Replace η by −η.)

(e) Set

ϑZ(v) =
∑
η∈Zg

eπi(2
tvη+tηZη).

Show that the zero locus of ϑZ(v) is well-defined on X and it is called a theta-divisor on X.

Abelian varieties

Exercise 5. Algebraic constructions. Assume for simplicity that we work over an algebraically closed

field k of characteristic 0.
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(a) (See-saw principle) Let X and Y be varieties. Suppose X is complete. Let L and M be two line

bundles on X × Y . If for all closed points y ∈ Y we have Ly ∼= My there exists a line bundle

N on Y such that L ∼= M ⊗ p∗N , where p : X × Y → Y is the projection onto Y . (Hint: By

“semi-continuity”, h0(Xy, Ly ⊗My) = 1 for all close points, implies that p∗(L ⊗M) is a line

bundle).

It follows from the See-saw principle (via the Theorem of the cube) that if X is an abelian variety and Y

a variety, then for every triple (f, g, h) of morphisms Y → X and for every line bundle L on X, we have

(2) (f + g + h)∗L ∼= (f + g)∗L⊗ (f + h)∗L⊗ (g + h)∗L⊗ f∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.

Define Pic0X = {M ∈ PicX t∗xM
∼= M for all x ∈ X}, where tx : X → X is the translation map tx(y) =

y + x (compare with the analytic description given by the Appell-Humbert Theorem).

(b) Let X be an abelian variety and L ∈ PicX. Deduce from (2) that

ϕL : X → Pic0X defined by x 7→ t∗xL⊗ L−1

is well-defined and is a homomorphism.

Define the Mumford line bundle M (L) := m∗L⊗ p∗1L−1 ⊗ p∗2L−1 on X ×X.

Define set theoretically K(L) :=
{
x ∈ X M (L)|X×{x} ∼= OX

}
.

(c) Show that K(L) = kerϕL and deduce from the See-saw principle that M (L)|X×K(L)
∼= OX×K(L).

(d) Show that, if L is ample then K(L) is a finite group.

(e) Let M ∈ Pic0X − {OX}, show that Hi(X,M) = 0 for all i. (Hint: Show that (−1)∗M = M−1,

and use it to prove H0(X,M) = 0. Then use Künneth formula to extend the result for i > 0).

Suppose that L ∈ PicX is an ample line bundle. We have seen that ϕL is a homomorphism with finite

kernel K(L). Once, one prove that ϕL is surjective, we have seen that Pic0X is isomorphic to X/K(L)

as an abstract group. Section [13, §7] allows to give to X/K(L) ∼= Pic0X an algebraic structure, such

that, there exists a unique line bundle P ∈ Pic(X × Pic0X) (the Poincaré line bundle), such that

(3) M (L) = (id×ϕL)∗P,

i.e. PX×{M} ∼= M ∈ Pic0X. The computation (e), shows that the sheaves Rip∗P are only supported

at the origin. Using the full machinery of “semi-continuity” one can show that

(4) Rip∗P =

k(0), if i = g;

0, otherwise.

(f) Let L be an ample line bundle. Show that χ(X ×X,M (L)) = (−1)gχ(X,L).

(g) Use (3), (4), and the previous computation to show that degϕL = χ(X,L)2.

(h) Use (4) to prove the following theorem [11, Thm. 2.2]: ΦP : Db(X) → Db(Pic0(X)), defined as

ΦP(E) = Rp2∗(p
∗
1E ⊗P), is an equivalence of derived categories. If we allow to interchange p1

by p2, we get more precisely that ΦP ◦ ΦP = (−1)∗[−g].

Exercise 6. Algebraic point of view of Exercise 1. An abelian variety is a group variety which, as

a variety, is complete. Let X1 and X2 be abelian varieties and let f : X1 → X2 be a morphism.

(b’) The composition h := t−f(0) ◦f is a homomorphism of groups (tx0(x) = x+x0 is the translation).

(Hint: Use the Rigidity Lemma: Let X, Y and Z be algebraic varieties over a field k. Suppose

that X is complete. If f : X × Y → Z is a morphism with the property that, for some y ∈ Y (k),
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the fibre X×{y} is mapped to a point z ∈ Z(k) then f factors through the projection X×Y → Y ).

As a corollary obtain that the group structure of an abelian variety is commutative.

Observe also that, we get HomSch/k(X1, X2) = HomAV (X,Y )× Y (k).

(c’) The following conditions are equivalent:

(i) f is surjective and dimX1 = dimX2;

(ii) ker f is a finite group scheme and dimX1 = dimX2;

(iii) f is a finite, flat and surjective morphism.

(Hint: You may use that quasi-finite morphism between two abelian varieties of the same di-

mension is flat. Also, if f is a morphism of finite type between two abelian varieties, then there

is a non-empty open subset U ⊆ Y such that either f−1(U) = ∅ or the restricted morphism

f−1(U)→ U is flat.)

(d’) Let X be a g-dimensional abelian variety over a field k. Let ` be a prime number different from

char(k). Then, the group scheme X[`n] := ker `n has rank `2ng. We define the Tate-`-module of

X, to be the projective limit

T`X := lim
(

0
`← X[`]

`← X[`2]
`← X[`3]

`← · · ·
)

Then the Z`-linear map T` : Hom(X1, X2)⊗Z` → HomZ`(T`X1, T`X2) given by f ⊗ c 7→ c · T`(f)

is injective and has a torsion-free cokernel.

Moduli space

Exercise 7. The Siegel upper half space. Let Hg = {Z ∈M(g × g,C) Z = tZ, ImZ > 0}. Define

XZ := Cg/(Z,D)Z2g and HZ := (ImZ)−1. The correspondence Z 7→ (XZ , HZ , {columns of (Z,D)})
presents the Siegel upper half space HG as a moduli space for polarized abelian varieties of (fixed) type

D with symplectic basis.

(a) Show that there is an isomorphism (XZ , HZ) → (XZ′ , HZ′) if, and only if, there is M ∈
Sp(D,Z) =

{
M ∈ SL(2g,Z) M

(
0 D
−D 0

)
tM =

(
0 D
−D 0

)}
such that

Z ′ = (αZ + βD)(γZ + δD)−1D, where M =
(
α β
γ δ

)
We denote (Hint: Use the rational and the analytic representations of the isomorphism.)

(b) Show that the automorphism group of a polarized abelian variety (X,H) is finite.

(c) The map Sp(2g,R) acts on Hg as a group of biholomorphic automorphisms and the group homo-

morphism

Sp(2g,R)→ Bihol(Hg)

has kernel {±1}.

Exercise 8. The “universal” family. Let Z ∈ Hg and consider the isomorphism of R-vector spaces:

jZ : R2g −→ Cg

x 7−→ (Z, id)x

and denote ΛD =
(

id 0
0 D

)
Z2g. Then ΛD acts freely and properly discontinuously on Cg ×Hg by

l(v, Z) = (v + jZ(l), Z) for l ∈ ΛD and (v, Z) ∈ Cg ×Hg.
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Consider XD := (Cg ×Hg)/ΛD
p→ Hg.

(a) Show that the fibre p−1(Z) = XZ (Notation as in the previous exercise).

(b) Show that the map,

ΛD × (Cg ×Hg) −→ C∗

(l, (v, Z)) 7−→ e−πi
tl1Zl1−2πitvl1 ,

where l1 ∈ Rg denotes the vector of first g components of l ∈ R2g is a factor of automorphy. Show

that it defines a line bundle L, such that L|XZ ∼= L(HZ , χ0).

(c) Recall that Sp(D,Z) =
{
M ∈ SL(2g,Z) M

(
0 D
−D 0

)
tM =

(
0 D
−D 0

)}
and consider the action

M : Cg ×Hg −→ Cg ×Hg
(v, Z) 7−→ ((γZ + δ)−1v,M(Z))

where M =
(
α β
γ δ

)
.

Show that it descends to an action on the family of abelian varieties p : XD → Hg.
(d) Show that we can consider the quotient p̄ : XD/ Sp(D,Z) → Hg/ Sp(D,Z), but the fiber p̄−1(Z)

over a fixed point Z ∈ Hg is the quotient of XZ modulo the isotropy subgroup of Sp(D,Z) in Z.

We call XD := XD/ Sp(D,Z) (Xg when D = id). The full level structure

Γ(n) := {M ∈ Sp(2,Z) M ≡ 1 mod n} ⊂ Sp(2g,Z)

acts freely on Hg for n > 3. Therefore, the previous construction replacing Sp(D,Z) by Γ(n), allows us

to construct a universal family Xg(n) → Ag(n) := Hg/Γ(n). This shows that Ag(n) for n > 3 is a fine

moduli space.

Exercise 9. Shioda modular surfaces. Recall Γ(n) := {M ∈ Sp(2,Z) M ≡ 1 mod n}. Consider

H(n) :=
{(

1 kn ln
0 a b
0 c d

)
; k, l ∈ Z;

(
a b
c d

)
∈ Γ(n)

}
H(n) acts on C×H1 by (

1 kn ln
0 a b
0 c d

)
: (t, z) 7→

(
t+knz+ln
cz+d , az+dcz+d

)
.

We have the following diagram:

S0(n) := (C×H1)/H(n),

��

[t, z]

��
X0(n) := H1/Γ(n), [z].

(a) Show that the fibre over z ∈ X0(n) is Ez = C/(Zz + Z).

(b) Show that the stabilizer at ∞ of H(n) is

P =
{(

1 kn ln
0 1 rn
0 0 1

)
; k, l, r ∈ Z

}
∼= Z3

(c) Consider P as the extension 1→ P ′ → P → P ′′ → 1, where

P ′ =
{(

1 0 ln
0 1 rn
0 0 1

)
; l, r ∈ Z

}
∼= Z2 P ′′ =

{(
1 kn 0
0 1 0
0 0 1

)
; k ∈ Z

}
∼= Z.

Let W a neighbourhood of C× {∞}. Show that

e : W −→ (C∗)2

(t, z) 7−→ (e
2πiz
n , e

2πit
n ) =: (u,w)
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is a partial quotient of W by the action of P ′, and P ′′ acts on e(W ) ⊆ (C∗)2 by(
1 kn 0
0 1 0
0 0 1

)
: (x, y) 7→ (x, xnky).

(d) Consider the lattice M = Z2 and the dual lattice N = M∗ = Z2. In M∗⊗R consider the following

fan (i.e. collection Σ of strictly convex cones):

σk = R>0(k + 1, 1) + R>0(k, 1)

ρk = R>0(k, 1)

If σ ⊂ M∗ ⊗ R is a cone, we call σ∨ = {x ∈M ⊗ R 〈x, y〉 > 0 for all y ∈ σ} the dual cone of σ.

Show that

σ∨k = R>0(1,−k) + R>0(−1, k + 1)

ρ∨k = R>0(1,−k) + R>0(−1, k + 1) + R>0(1,−k − 1).

Then

Tσk := SpecC[σ∨k ∩M ] ∼= C2

Tρk := SpecC[ρ∨k ∩M ] ∼= C× C∗

T{0} = SpecC[M ] ∼= C∗.

(e) If ρ ⊂ τ , by duality τ∨ ⊂ ρ∨, so we have induced maps Tρ ⊂ Tτ . Show that in our case

T{0} ↪→ Tσk ; (u, v) 7→ (uv−k, u−1vk+1) =: (uk, vk)

Tρk ↪→ Tσk ; (uk, vk) 7→ (uk, vk)

Tρk+1
↪→ Tσk ; (uk+1, vk+1) 7→ (v−1

k , ukv
2
k).

(f) Define TΣ as
(∐

τ∈{0,σk,ρk} Tτ

)
/ ∼, where two points in x1 ∈ Tς1 and x2 ∈ Tς2 are related if there

exists a subcone % ⊂ ς1 ∩ ς2, such that x1 = x2 ∈ T%.
We have an embedding T{0} = (C∗)2 ↪→ TΣ. Show that TΣ \ (C∗)2 is a chain of Ci ∼= P1 with

i ∈ Z, and such that Ci ∩Ci+1 = {pt}. Show that the generator of P ′′ acts on the chain of P1 by

sending Ci to Ci+n.

Then we can glue

S0(n) ∪W/P XΣ/P
′′,

where XΣ =
˚

e(W ), and we have added a n-gon as a fiber over ∞, consisting of n curves Ci ∼= P1.

(e) Show that in the quotient TΣ/P
′′, we have C2

i = −2.

Since there is a transformation g ∈ SL(2,Z) which maps a cusp in X(n) to ∞, we can repeat this

procedure to obtain a compactification S(n) of S0(n) fibred over X(n) such that its singular fibres over

each of the cusps of X(n) are n-gons of smooth rational (−2)-curves.

(f) Consider the Hesse-pencil: Cλ : x3
0 + x3

1 + x3
2 − 3λx0x1x2 = 0. Show that when Cλ is singular,

then it is a triangle. this pencil has 9 fixed points. S(3) is the blow-up of P2 on the 9 fixed points

of the pencil. The induced map is the fibration S(3)→ P1 ∼= X(3).

Exercise 10. Semi-abelian varieites. A semi-abelian variety is an algebraic group G, which is the

extension of an abelian variety A and a torus T ∼= (C∗)r. Such group G is connected and commutative,

and T is its unique maximal subtorus. The dimension of the torus T is called the rank of G, and A = G/T

its abelian part.
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(a) Let X := Hom(T,C) ∼= Zr be the character group of the torus T . Show that the extensions

1→ T → G→ A→ 1 are in 1− 1-correspondence with the homomorphisms

X → Pic0A.

(b) Let Z ∈ H2 and consider the lattice Λ =
⊕4

i=1 Zei, where ei are the columns of the matrix (Z, id).

(c) Consider the abelian surface AZ = C2/Λ. Show that AZ = (C∗)2/(Ze1 + Ze2), where Ze1 + Ze2

acts on (C∗)2 via

e1 : (u, v) 7→ (ue2πiz11 , ve2πiz12) and e2 : (u, v) 7→ (ue2πiz12 , ve2πiz22).

(d) Assume that z22 → ∞. Then the action of e2 is not free, but we can consider G := C2/(Ze1 +

Ze3 + Ze4). Show that

1→ C∗ → G
ψ→ Ez11 → 1, where ψ([u, v]) = [u].

(e) Define e := [z12] ∈ Ez11 . Show that the classifying morphism associated to the previous semi-

abelian variety is

Z −→ Pic0Ez11
1 7−→ OE(e− 0)

(f) Show that G ⊂ P(O⊕O(e−0)) and we can consider the degenerate abelian surface as the quotient

that identifies the points x of the zero section, with the points x+ e of the infinity section.

Exercise 11. Hodge line bundle and canonical bundle on Ag. Assume that g > 2.

(a) Let M =
(
α β
γ δ

)
∈ Sp(2g,Z). Show that the holomorphic map (M,Z) 7→ f(M,Z) = det(γZ+ δ)k

satisfies the cocycle condition (it is a factor of automorphy),

f(M ·M ′, Z) = f(M,M ′(Z))f(M ′, Z) for all M,M ′ ∈ Sp(2g,Z) and Z ∈ Hg.

Since Γ(3) = {M ∈ SL(2,Z) M ≡ id mod 3} ⊆ Sp(2g,Z) acts freely on Hg, this factor of au-

tomorphy defines a line bundle on Ag(3) := Hg/Γ(3), whose sections are holomorphic functions

such that

F (M(Z)) = det(γZ + δ)kF (Z) for all M ∈ Γ(3) and Z ∈ Hg

((scalar) weight k modular forms for the full 3-level structure).

We can define the Hodge vector bundle as E := π∗(Ω
1
Xg/Ag ) on Ag (in order to do that, we have to pretend

that Sp(2g,Z) acts freely on Hg, or use stacks -see Exercise 8). So, the fiber of the Hodge vector bundle

over a point [X] ∈ Ag is the g-dimensional space of holomorphic 1-forms on X. We denote by L := det E
the corresponding determinant Hodge line bundle.

(b) We can lift the Hodge bundle through the quotient p : Hg → Ag. Then, fiber of the Hodge bundle

over Z is p∗E|Z = H0(XZ ,Ω
1
XZ

) = Cdz1⊕ . . .⊕Cdzg (i.e., E lifts to a trivial vector bundle on Hg,
but it is not trivial on the quotient Ag). Let M =

(
α β
γ δ

)
∈ Sp(2g,Z). Show that the isomorphism

H0(XZ ,Ω
1
XZ )→ H0(XMZ ,Ω

1
XMZ )

between complex g-vector spaces is given by the matrix (γZ + δ)−1. This shows that the hodge

line bundle L is the bundle of (scalar) modular forms of weight 1.



9

(c) To compute the canonical class of Ag, consider the explicit volume form ω(Z) :=
∧
i≤j Zij on

Hg. Show that ω(MZ) = det(γZ + δ)−g−1ω(Z), which means that the canonical divisor is

KAg = (g + 1)L.

Exercise 12. Picard group of Ag. Consider Ag the moduli space of principally polarized abelian

varieties.

(a) Show that there are at most countably many proper analytic subvarieties Ai in the moduli space

Ag such that (X,Θ) ∈ Ag \
⋃
iAi has endomorphism ring Z. (Hint: consider for any

(
α β
γ δ

)
∈

M(2g × 2g,Z) the equation Z(γZ + δ) = αZ + β in Hg.)
(b) Assume that the locus in Ag of principally polarized abelian varieties having endomorphism

ring greater that Z has codimension 2. Then, prove that the smooth locus A0
g of Ag can be

characterized as locus of principally polarized abelian varieties (A,Θ) having automorphism

group {±1} (i.e. Autppav(A,H) = {±1}). (Hint: use that Ag,n the moduli space of prin-

cipally polarized abelian structure with level n-structure is smooth when n > 3, i.e Γg(n) :=

{γ ∈ Sp(2g,Z) γ ≡ id2g(mod n)} acts freely on Hg if n > 3.)

(c) Assume that g > 4. Assuming that H1(A0
g,Z) = 0 and H2(A0

g,Z) ∼= Z, show that Pic(A0
g)
∼= Z.

(Hint: Use that for g > 4, the boundary of the Satake compactification has codimension greater

than 1.)

(d) Show that H1(A0
g,Z) = 0 and H2(A0

g,Z) ∼= Z (Assume, the following result of Borel: for any

subgroup Γ ⊂ Sp(2g,Z) of finite index, we have H∗(Γ,Q) = Q[c2, c6, c10, . . .] up to degree 6 g−2.)
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