MORPHISMS OF COMPLEX TORI AND ABELIAN VARIETIES

Exercise 1. Homomorphisms of complex tori. Let $X_1 = V_1/\Lambda_1$ and $X_2 = V_2/\Lambda_2$ be two complex tori (V_i are complex vector spaces and $\Lambda_i \subset V_i$ are lattices, i.e. discrete subgroups of maximal rank). Let $f: X_1 \to X_2$ be a holomorphic map.

- (a) Show that there exists an affine map $\tilde{f}: V_1 \to V_2$, that induces f. (**Hint:** use Liouville Theorem).
- (b) The composition $h := t_{-f(0)} \circ f$ is a homomorphism of groups $(t_{x_0}(x) = x + x_0)$ is the translation). The injective homomorphism $\operatorname{Hom}(X_1, X_2) \to \operatorname{Hom}_{\mathbb{C}}(V_1, V_2)$ which sends $h \mapsto \tilde{h}$ is called the analytic representation of $\operatorname{Hom}(X_1, X_2)$.
- (c) If we consider $h: X_1 \to X_2$, then $h(X_1)$ is a subtorus of X_2 and the connected component $(\ker h)^0$ passing through 0 of $\ker h$ is a subtorus of X_1 . $\ker h/(\ker h)^0$ is a finite group and $\dim X_1 = \dim(\ker h)^0 + \dim \operatorname{im} h$.
- (d) Show that $\operatorname{Hom}(X_1, X_2) \cong \mathbb{Z}^m$ for some $m \leq 4 \dim X_1 \cdot \dim X_2$. (**Hint:** use the rational representation $\operatorname{Hom}(X_1, X_2) \to \operatorname{Hom}_{\mathbb{Z}}(\Lambda_1, \Lambda_2)$).

LINE BUNDLES ON COMPLEX TORI

Exercise 2. Factors of automorphy and line bundles on complex tori. Let $X = V/\Lambda$ be a complex torus. A holomorphic map $f: \Lambda \times V \to \mathbb{C}^*$ satisfying $f(\lambda + \mu, v) = f(\lambda, v + \mu)f(\mu, v)$ is called a factor of automorphy. Given an automorphy factor f we can define the following action of Λ on $V \oplus \mathbb{C}$,

$$\Lambda \ni \lambda : (v,t) \mapsto (v+\lambda, f(\lambda,v) \cdot t)$$

The quotient $L = (V \oplus \mathbb{C})/\Lambda$ is well-defined, and it is a line bundle over X. (This is a particular case of the isomorphism $H^1(\pi_1(X), H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}^*)) \to \ker(H^1(X, \mathcal{O}_X^*) \xrightarrow{\pi^*} H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}^*))$, where $\pi : \tilde{X} \to X$ is the universal cover of X.)

- (a) Let $h: V \to \mathbb{C}^*$ be a holomorphic function. Show that $h(v+\lambda)h(v)^{-1}$ is a factor of automorphy that defines the trivial line bundle on X (the cycles of this type are called coboundaries).
- (b) Show that $H^2(X,\mathbb{Z}) \cong \operatorname{Alt}^2(\Lambda,\mathbb{Z}) = \operatorname{group}$ of \mathbb{Z} -valued alternating 2-forms on Λ . (**Hint:** Use Künneth formula).

Consider the exponential exact sequence $0 \to \mathbb{Z} \to \mathcal{O}_X \to \mathcal{O}_X^* \to 0$. One one hand, it gives us the following exact sequence $0 \to \mathbb{Z} \to H^0(V, \pi^*\mathcal{O}_X) \stackrel{e^{2\pi i}}{\to} H^0(V, \pi^*\mathcal{O}_X^*) \to 0$. On the other hand, if we consider the coboundary maps of the cohomological long exact sequences, they are compatible through the following commutative diagram:

$$H^{1}(\Lambda, H^{0}(V, \pi^{*}\mathcal{O}_{X}^{*})) \xrightarrow{\delta} H^{2}(\Lambda, \mathbb{Z})$$

$$\cong \bigvee_{\delta = c_{1}} \bigoplus_{\delta = c_{1}} H^{2}(X, \mathbb{Z}) \cong \operatorname{Alt}^{2}(\Lambda, \mathbb{Z})$$
Pic $X \cong H^{1}(X, \mathcal{O}_{X}^{*}) \xrightarrow{\delta = c_{1}} H^{2}(X, \mathbb{Z}) \cong \operatorname{Alt}^{2}(\Lambda, \mathbb{Z})$

Therefore, given a factor of automorphy $f = e^{2\pi i g}$ defining $L \in \text{Pic } X$, the first Chern class $c_1(L)$ can be described in $\text{Alt}^2(\Lambda, \mathbb{Z})$ as

$$E_L(\lambda,\mu) = g(\mu,v+\lambda) + g(\lambda,v) - g(\lambda,v+\mu) - g(\mu,v) \qquad \text{ for all } v \in V.$$

(c) Show that E_L is well-defined, i.e., the definition does not depend on $v \in V$.

- (d) Show that $E_L(\Lambda, \Lambda) \subseteq \mathbb{Z}$ and after extending E_L \mathbb{R} -linearly, we get $E_L(iv, iw) = E_L(v, w)$ for all $v, w \in V$. (**Hint:** Use that the map $H^2(X, \mathbb{Z}) \to H^2(X, \mathcal{O}_X)$ factorizes through $H^2(X, \mathbb{C})$, the Hodge decomposition and the isomorphism $H^q(X, \Omega_X^p) \cong \wedge^p T \otimes \wedge^q \overline{T}$, where $T = \text{Hom}_{\mathbb{C}}(V, \mathbb{C})$.)
- (e) There is a 1-1 correspondence between the set of hermitian forms H on V and the set of real valued alternating forms E on V satisfying E(iv, iw) = E(v, w). (Note: With the convention H(v, w) = E(iv, w) + iE(v, w), the hermitian forms become holomorphic on the first factor).
- (f) Show that E is non-degenerate if, and only if, H is non-degenerate.

Recall that the image of c_1 is called the Neron-Severi group NS X of X. A semicharacter for an hermitian form $H \in \text{NS } X$ is a map $\chi : \Lambda \to U(1) = \{z \in \mathbb{C} \mid |z| = 1\}$ such that

$$\chi(\lambda + \mu) = \chi(\lambda)\chi(\mu)e^{i\pi \operatorname{Im} H(\lambda,\mu)},$$

so when H = 0 it is a character.

(g) Given (H, χ) , where χ is a semicharacter (s.c.) for $H \in NS X$. Show that

$$a_{(H,\chi)}(\lambda,v) := \chi(\lambda)e^{\pi H(v,\lambda) + \frac{\pi}{2}H(\lambda,\lambda)}$$

is a factor of automorphy (it is usually called canonical factor of (H, χ)).

(h) Check that the following diagram commutes:

$$\{(H,\chi)\}_{\chi \text{ s.c. of } H \in \text{NS } X} \xrightarrow{p_1} \text{NS } X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$\text{Pic } X \xrightarrow{c_1} \text{NS } X,$$

where $\psi(H,\chi) = a_{(H,\chi)}$.

(h) Finally to show the Appell-Humbert theorem, i.e. the following diagram:

$$0 \longrightarrow \operatorname{Hom}(\Lambda, U(1)) \longrightarrow \{(H, \chi)\}_{\chi \text{ s.c. of } H \in \operatorname{NS} X} \xrightarrow{p_1} \operatorname{NS} X \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

we need to show that ϕ is an isomorphism (**Hint:** Consider $\operatorname{Pic}^0 X \cong \operatorname{Im}(H^1(X, \mathcal{O}_X)) \to H^1(X, \mathcal{O}_X^*) \cong \operatorname{Im}(H^1(X, \mathbb{C}) \xrightarrow{\varepsilon} H^1(X, \mathcal{O}_X^*))$, where ε is given by $\mathbb{C} \xrightarrow{e^{2\pi i}} \mathbb{C}^* \subseteq \mathcal{O}_X^*$. This shows that $L \in \operatorname{Pic}^0 X$ can be represented by a factor of automorphy $f(\lambda, v)$ independent of $v \in V$.)

Exercise 3. Sections of line bundles. Let $X = V/\Lambda$ be a complex torus of dimension g that admits a positive definite hermitian form H such that $H(\Lambda, \Lambda) \subseteq \mathbb{Z}$. Let $E = \operatorname{Im} H$ be the corresponding alternating form. There exists a basis of Λ (called symplectic basis of Λ) such that E is given by the matrix

$$\begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix},$$

where $D = \text{diag}(d_1, \dots, d_g)$ with integers $d_i \geqslant 0$ and $d_i | d_{i+1}$. This induces a decomposition $\Lambda = \Lambda_1 \oplus \Lambda_2$. Let V_i the \mathbb{R} -linear span of Λ_i so $V = V_1 \oplus V_2$.

(a) Let be $\chi_0: V \to \mathbb{C}$ such that $\chi_0(v) = e^{\pi i E(v_1, v_2)}$. Show that it is a semicharacter for H.

(b) Show that $\Lambda_2 \otimes \mathbb{C} = V$. Let $B: V \times V \to \mathbb{C}$ the \mathbb{C} -bilinear extension of the real symmetric form $H|_{V_2 \times V_2}$. Show that (H-B)(v,w) = 0 if $w \in V_2$ and (H-B)(v,w) = 2iE(v,w) if $v \in V_2$.

If f is a factor of automorphy of a line bundle L, then the space of sections $H^0(X, L)$ of L can be identified naturally with the sections of the trivial bundle $\mathbb{C} \times V \to V$, that are invariant under the action of Λ , that is, the set of holomorphic functions $\vartheta: V \to \mathbb{C}$ such that

(1)
$$\vartheta(v+\lambda) = f(\lambda, v)\vartheta(v).$$

In the setting of the previous exercise, consider the line bundle L given by the Appell-Humbert data (H, χ_0) .

(c) Assume that the following series is well-defined and absolutely convergent (this relies on the fact that Re(H-B) is positive definite on V_1)

$$\vartheta_H(v) = e^{\frac{\pi}{2}B(v,v)} \sum_{\mu \in \Lambda_1} e^{\pi(H-B)(v,\mu) - \frac{\pi}{2}(H-B)(\mu,\mu)}.$$

Show that ϑ_H satisfies (1) for the canonical factor of automorphy $f = a_{(H,\chi_0)}$.

Matrix Presentations

Exercise 4. Riemann relations. Let $X = V/\Lambda$ be a complex torus of dimension g that admits a positive definite hermitian form H such that $H(\Lambda, \Lambda) \subseteq \mathbb{Z}$. Let $\lambda_1, \ldots, \lambda_g, \mu_1, \ldots, \mu_g$ a symplectic basis of Λ for $E = \operatorname{Im} H$. i.e. with respect to this basis E is given by $\begin{pmatrix} 0 & D \\ 0 & D \end{pmatrix}$ where $D = \operatorname{diag}(d_1, \ldots, d_g)$.

- (a) Let $e_j = \frac{1}{d_j}\mu_j$, for j = 1, ..., g. Show that $\{e_j\}_j$ forms a basis of V (**Hint:** This is (b) of the previous Exercise). Denote $\Pi = (Z, D)$ and observe that $X = \mathbb{C}^g/\Pi\mathbb{Z}^{2g}$.
- (b) Show that ${}^tZ = Z$ and Im Z > 0. (This are the Riemann relations with a symplectic basis).
- (c) $(\operatorname{Im} Z)^{-1}$ is the matrix of H with respect to e_1, \ldots, e_q .
- (d) Let $D=\operatorname{id}$, then in the setting of the previous Exercise, $\Lambda_1=Z\times\mathbb{Z}^g$ and $\Lambda_2=\mathbb{Z}^g$, and also $V_1=Z\mathbb{R}^g$ and $V_2=\mathbb{R}^g$. So $w\in W$, can be written as $w=Zw_1+w_2$. Then the symmetric bilinear form B defined in (b) can be computed as $B(v,w)={}^t\!v(\operatorname{Im} Z)^{-1}w$ and $(H-B)(v,w)=-2i{}^t\!vw_1$. So

$$\vartheta_H(v) = e^{\frac{\pi}{2} t_v (\operatorname{Im} Z)^{-1} v} \sum_{\eta \in \mathbb{Z}^g} e^{\pi i (2^t v \eta + t_\eta Z \eta)}.$$

(**Hint:** Replace η by $-\eta$.)

(e) Set

$$\overline{\vartheta}_Z(v) = \sum_{\eta \in \mathbb{Z}^g} e^{\pi i (2^t v \eta + {}^t \eta Z \eta)}.$$

Show that the zero locus of $\overline{\vartheta}_Z(v)$ is well-defined on X and it is called a theta-divisor on X.

ABELIAN VARIETIES

Exercise 5. Algebraic constructions. Assume for simplicity that we work over an algebraically closed field k of characteristic 0.

(a) (See-saw principle) Let X and Y be varieties. Suppose X is complete. Let L and M be two line bundles on $X \times Y$. If for all closed points $y \in Y$ we have $L_y \cong M_y$ there exists a line bundle N on Y such that $L \cong M \otimes p^*N$, where $p: X \times Y \to Y$ is the projection onto Y. (**Hint:** By "semi-continuity", $h^0(X_y, L_y \otimes M_y) = 1$ for all close points, implies that $p_*(L \otimes M)$ is a line bundle).

It follows from the See-saw principle (via the Theorem of the cube) that if X is an abelian variety and Y a variety, then for every triple (f, g, h) of morphisms $Y \to X$ and for every line bundle L on X, we have

$$(2) (f+g+h)^*L \cong (f+g)^*L \otimes (f+h)^*L \otimes (g+h)^*L \otimes f^*L^{-1} \otimes g^*L^{-1} \otimes h^*L^{-1}.$$

Define $\operatorname{Pic}^0 X = \{ M \in \operatorname{Pic} X \mid t_x^* M \cong M \text{ for all } x \in X \}$, where $t_x : X \to X$ is the translation map $t_x(y) = y + x$ (compare with the analytic description given by the Appell-Humbert Theorem).

(b) Let X be an abelian variety and $L \in \text{Pic } X$. Deduce from (2) that

$$\varphi_L: X \to \operatorname{Pic}^0 X$$
 defined by $x \mapsto t_x^* L \otimes L^{-1}$

is well-defined and is a homomorphism.

Define the Mumford line bundle $\mathscr{M}(L) := m^*L \otimes p_1^*L^{-1} \otimes p_2^*L^{-1}$ on $X \times X$. Define set theoretically $K(L) := \left\{ x \in X \,\middle|\, \mathscr{M}(L)|_{X \times \{x\}} \cong \mathcal{O}_X \right\}$.

- (c) Show that $K(L) = \ker \varphi_L$ and deduce from the See-saw principle that $\mathscr{M}(L)|_{X \times K(L)} \cong \mathscr{O}_{X \times K(L)}$.
- (d) Show that, if L is ample then K(L) is a finite group.
- (e) Let $M \in \operatorname{Pic}^0 X \{\mathcal{O}_X\}$, show that $H^i(X, M) = 0$ for all i. (**Hint:** Show that $(-1)^*M = M^{-1}$, and use it to prove $H^0(X, M) = 0$. Then use Künneth formula to extend the result for i > 0).

Suppose that $L \in \operatorname{Pic} X$ is an ample line bundle. We have seen that φ_L is a homomorphism with finite kernel K(L). Once, one prove that φ_L is surjective, we have seen that $\operatorname{Pic}^0 X$ is isomorphic to X/K(L) as an abstract group. Section [13, §7] allows to give to $X/K(L) \cong \operatorname{Pic}^0 X$ an algebraic structure, such that, there exists a unique line bundle $\mathscr{P} \in \operatorname{Pic}(X \times \operatorname{Pic}^0 X)$ (the Poincaré line bundle), such that

(3)
$$\mathscr{M}(L) = (\mathrm{id} \times \varphi_L)^* \mathscr{P},$$

i.e. $\mathscr{P}_{X\times\{M\}}\cong M\in \operatorname{Pic}^0X$. The computation (e), shows that the sheaves $R^ip_*\mathscr{P}$ are only supported at the origin. Using the full machinery of "semi-continuity" one can show that

(4)
$$R^{i}p_{*}\mathscr{P} = \begin{cases} k(0), & \text{if } i = g; \\ 0, & \text{otherwise.} \end{cases}$$

- (f) Let L be an ample line bundle. Show that $\chi(X \times X, \mathcal{M}(L)) = (-1)^g \chi(X, L)$.
- (g) Use (3), (4), and the previous computation to show that deg $\varphi_L = \chi(X, L)^2$.
- (h) Use (4) to prove the following theorem [11, Thm. 2.2]: $\Phi_{\mathscr{P}}: \mathrm{D^b}(X) \to \mathrm{D^b}(\mathrm{Pic}^0(X))$, defined as $\Phi_{\mathscr{P}}(E) = \mathbf{R}p_{2*}(p_1^*E \otimes \mathscr{P})$, is an equivalence of derived categories. If we allow to interchange p_1 by p_2 , we get more precisely that $\Phi_{\mathscr{P}} \circ \Phi_{\mathscr{P}} = (-1)^*[-g]$.

Exercise 6. Algebraic point of view of Exercise 1. An abelian variety is a group variety which, as a variety, is complete. Let X_1 and X_2 be abelian varieties and let $f: X_1 \to X_2$ be a morphism.

(b') The composition $h := t_{-f(0)} \circ f$ is a homomorphism of groups $(t_{x_0}(x) = x + x_0)$ is the translation). (**Hint:** Use the Rigidity Lemma: Let X, Y and Z be algebraic varieties over a field k. Suppose that X is complete. If $f: X \times Y \to Z$ is a morphism with the property that, for some $y \in Y(k)$,

the fibre $X \times \{y\}$ is mapped to a point $z \in Z(k)$ then f factors through the projection $X \times Y \to Y$). As a corollary obtain that the group structure of an abelian variety is commutative.

Observe also that, we get $\operatorname{Hom}_{Sch/k}(X_1, X_2) = \operatorname{Hom}_{AV}(X, Y) \times Y(k)$.

- (c') The following conditions are equivalent:
 - (i) f is surjective and dim $X_1 = \dim X_2$;
 - (ii) ker f is a finite group scheme and dim $X_1 = \dim X_2$;
 - (iii) f is a finite, flat and surjective morphism.

(**Hint:** You may use that quasi-finite morphism between two abelian varieties of the same dimension is flat. Also, if f is a morphism of finite type between two abelian varieties, then there is a non-empty open subset $U \subseteq Y$ such that either $f^{-1}(U) = \emptyset$ or the restricted morphism $f^{-1}(U) \to U$ is flat.)

(d') Let X be a g-dimensional abelian variety over a field k. Let ℓ be a prime number different from $\operatorname{char}(k)$. Then, the group scheme $X[\ell^n] := \ker \ell^n$ has rank ℓ^{2ng} . We define the Tate- ℓ -module of X, to be the projective limit

$$T_{\ell}X := \lim \left(0 \stackrel{\ell}{\leftarrow} X[\ell] \stackrel{\ell}{\leftarrow} X[\ell^2] \stackrel{\ell}{\leftarrow} X[\ell^3] \stackrel{\ell}{\leftarrow} \cdots \right)$$

Then the \mathbb{Z}_{ℓ} -linear map $T_{\ell}: \operatorname{Hom}(X_1, X_2) \otimes \mathbb{Z}_{\ell} \to \operatorname{Hom}_{\mathbb{Z}_{\ell}}(T_{\ell}X_1, T_{\ell}X_2)$ given by $f \otimes c \mapsto c \cdot T_{\ell}(f)$ is injective and has a torsion-free cokernel.

Moduli space

Exercise 7. The Siegel upper half space. Let $\mathbb{H}_g = \{Z \in M(g \times g, \mathbb{C}) \mid Z = {}^tZ, \text{ Im } Z > 0\}$. Define $X_Z := \mathbb{C}^g/(Z,D)\mathbb{Z}^{2g}$ and $H_Z := (\text{Im } Z)^{-1}$. The correspondence $Z \mapsto (X_Z,H_Z,\{\text{columns of } (Z,D)\})$ presents the Siegel upper half space \mathbb{H}_G as a moduli space for polarized abelian varieties of (fixed) type D with symplectic basis.

(a) Show that there is an isomorphism $(X_Z, H_Z) \to (X_{Z'}, H_{Z'})$ if, and only if, there is $M \in \operatorname{Sp}(D, \mathbb{Z}) = \{ M \in \operatorname{SL}(2g, \mathbb{Z}) \mid M \left(\begin{smallmatrix} 0 & D \\ -D & 0 \end{smallmatrix} \right)^t M = \left(\begin{smallmatrix} 0 & D \\ -D & 0 \end{smallmatrix} \right) \}$ such that

$$Z' = (\alpha Z + \beta D)(\gamma Z + \delta D)^{-1}D, \quad \text{where } M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

We denote (Hint: Use the rational and the analytic representations of the isomorphism.)

- (b) Show that the automorphism group of a polarized abelian variety (X, H) is finite.
- (c) The map $\operatorname{Sp}(2g,\mathbb{R})$ acts on \mathbb{H}_g as a group of biholomorphic automorphisms and the group homomorphism

$$\operatorname{Sp}(2g,\mathbb{R}) \to \operatorname{Bihol}(\mathbb{H}_q)$$

has kernel $\{\pm 1\}$.

Exercise 8. The "universal" family. Let $Z \in \mathbb{H}_g$ and consider the isomorphism of \mathbb{R} -vector spaces:

$$j_Z: \mathbb{R}^{2g} \longrightarrow \mathbb{C}^g$$
 $x \longmapsto (Z, \mathrm{id})x$

and denote $\Lambda_D = \begin{pmatrix} \operatorname{id} & 0 \\ 0 & D \end{pmatrix} \mathbb{Z}^{2g}$. Then Λ_D acts freely and properly discontinuously on $\mathbb{C}^g \times \mathbb{H}_g$ by

$$l(v, Z) = (v + j_Z(l), Z)$$
 for $l \in \Lambda_D$ and $(v, Z) \in \mathbb{C}^g \times \mathbb{H}_q$

Consider $\mathbb{X}_D := (\mathbb{C}^g \times \mathbb{H}_q)/\Lambda_D \xrightarrow{p} \mathbb{H}_q$.

- (a) Show that the fibre $p^{-1}(Z) = X_Z$ (Notation as in the previous exercise).
- (b) Show that the map,

$$\Lambda_D \times (\mathbb{C}^g \times \mathbb{H}_g) \longrightarrow \mathbb{C}^*$$

$$(l, (v, Z)) \longmapsto e^{-\pi i^t l^1 Z l^1 - 2\pi i^t v l^1}$$

where $l^1 \in \mathbb{R}^g$ denotes the vector of first g components of $l \in \mathbb{R}^{2g}$ is a factor of automorphy. Show that it defines a line bundle \mathcal{L} , such that $\mathcal{L}|_{X_Z} \cong L(H_Z, \chi_0)$. (c) Recall that $\operatorname{Sp}(D, \mathbb{Z}) = \{ M \in \operatorname{SL}(2g, \mathbb{Z}) \mid M \left(\begin{smallmatrix} 0 & D \\ -D & 0 \end{smallmatrix} \right)^t M = \left(\begin{smallmatrix} 0 & D \\ -D & 0 \end{smallmatrix} \right) \}$ and consider the action

$$\begin{array}{cccc} M: & \mathbb{C}^g \times \mathbb{H}_g & \longrightarrow & \mathbb{C}^g \times \mathbb{H}_g \\ & (v,Z) & \longmapsto & ((\gamma Z + \delta)^{-1} v, M(Z)) \end{array} \qquad \text{where } M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}.$$

Show that it descends to an action on the family of abelian varieties $p: \mathbb{X}_D \to \mathbb{H}_q$.

(d) Show that we can consider the quotient $\bar{p}: \mathbb{X}_D/\operatorname{Sp}(D,\mathbb{Z}) \to \mathbb{H}_q/\operatorname{Sp}(D,\mathbb{Z})$, but the fiber $\bar{p}^{-1}(Z)$ over a fixed point $Z \in \mathbb{H}_g$ is the quotient of X_Z modulo the isotropy subgroup of $\mathrm{Sp}(D,\mathbb{Z})$ in Z.

We call $\mathcal{X}_D := \mathbb{X}_D / \operatorname{Sp}(D, \mathbb{Z})$ (\mathcal{X}_q when $D = \operatorname{id}$). The full level structure

$$\Gamma(n) := \{ M \in \operatorname{Sp}(2, \mathbb{Z}) \mid M \equiv 1 \bmod n \} \subset \operatorname{Sp}(2g, \mathbb{Z})$$

acts freely on \mathbb{H}_g for $n \geqslant 3$. Therefore, the previous construction replacing $\mathrm{Sp}(D,\mathbb{Z})$ by $\Gamma(n)$, allows us to construct a universal family $\mathcal{X}_g(n) \to \mathcal{A}_g(n) := \mathbb{H}_g/\Gamma(n)$. This shows that $\mathcal{A}_g(n)$ for $n \geqslant 3$ is a fine moduli space.

Exercise 9. Shioda modular surfaces. Recall $\Gamma(n) := \{M \in \operatorname{Sp}(2,\mathbb{Z}) \mid M \equiv 1 \bmod n\}$. Consider

$$H(n) := \left\{ \begin{pmatrix} 1 & kn & ln \\ 0 & a & b \\ 0 & c & d \end{pmatrix}; k,l \in \mathbb{Z}; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(n) \right\}$$

H(n) acts on $\mathbb{C} \times \mathbb{H}_1$ by

$$\left(\begin{smallmatrix} 1 & kn & ln \\ 0 & a & b \\ 0 & c & d \end{smallmatrix}\right) : (t,z) \mapsto \left(\begin{smallmatrix} t+knz+ln \\ cz+d \end{smallmatrix}, \begin{smallmatrix} az+d \\ cz+d \end{smallmatrix}\right).$$

We have the following diagram:

$$S^{0}(n) := (\mathbb{C} \times \mathbb{H}_{1})/H(n), \qquad [t, z]$$

$$\downarrow \qquad \qquad \downarrow$$

$$X^{0}(n) := \mathbb{H}_{1}/\Gamma(n), \qquad [z].$$

- (a) Show that the fibre over $z \in X^0(n)$ is $E_z = \mathbb{C}/(\mathbb{Z}z + \mathbb{Z})$.
- (b) Show that the stabilizer at ∞ of H(n) is

$$P = \left\{ \begin{pmatrix} 1 & kn & ln \\ 0 & 1 & rn \\ 0 & 0 & 1 \end{pmatrix}; k, l, r \in \mathbb{Z} \right\} \cong \mathbb{Z}^3$$

(c) Consider P as the extension $1 \to P' \to P \to P'' \to 1$, where

$$P' = \left\{ \begin{pmatrix} 1 & 0 & ln \\ 0 & 1 & rn \\ 0 & 0 & 1 \end{pmatrix}; l, r \in \mathbb{Z} \right\} \cong \mathbb{Z}^2 \qquad P'' = \left\{ \begin{pmatrix} 1 & kn & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; k \in \mathbb{Z} \right\} \cong \mathbb{Z}.$$

Let W a neighbourhood of $\mathbb{C} \times \{\infty\}$. Show that

$$\begin{array}{ccc} e: & W & \longrightarrow & (\mathbb{C}^*)^2 \\ & (t,z) & \longmapsto & (e^{\frac{2\pi iz}{n}}, e^{\frac{2\pi it}{n}}) =: (u,w) \end{array}$$

is a partial quotient of W by the action of P', and P" acts on $e(W) \subseteq (\mathbb{C}^*)^2$ by

$$\begin{pmatrix} 1 & kn & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : (x, y) \mapsto (x, x^{nk}y).$$

(d) Consider the lattice $M = \mathbb{Z}^2$ and the dual lattice $N = M^* = \mathbb{Z}^2$. In $M^* \otimes \mathbb{R}$ consider the following fan (i.e. collection Σ of strictly convex cones):

$$\sigma_k = \mathbb{R}_{\geqslant 0}(k+1,1) + \mathbb{R}_{\geqslant 0}(k,1)$$
$$\rho_k = \mathbb{R}_{\geqslant 0}(k,1)$$

If $\sigma \subset M^* \otimes \mathbb{R}$ is a cone, we call $\sigma^{\vee} = \{x \in M \otimes \mathbb{R} \mid \langle x, y \rangle \geqslant 0 \text{ for all } y \in \sigma\}$ the dual cone of σ . Show that

$$\begin{split} \sigma_k^\vee &= \mathbb{R}_{\geqslant 0}(1,-k) + \mathbb{R}_{\geqslant 0}(-1,k+1) \\ \rho_k^\vee &= \mathbb{R}_{\geqslant 0}(1,-k) + \mathbb{R}_{\geqslant 0}(-1,k+1) + \mathbb{R}_{\geqslant 0}(1,-k-1). \end{split}$$

Then

$$\begin{split} T_{\sigma_k} &:= \operatorname{Spec} \mathbb{C}[\sigma_k^\vee \cap M] \cong \mathbb{C}^2 \\ T_{\rho_k} &:= \operatorname{Spec} \mathbb{C}[\rho_k^\vee \cap M] \cong \mathbb{C} \times \mathbb{C}^* \\ T_{\{0\}} &= \operatorname{Spec} \mathbb{C}[M] \cong \mathbb{C}^*. \end{split}$$

(e) If $\rho \subset \tau$, by duality $\tau^{\vee} \subset \rho^{\vee}$, so we have induced maps $T_{\rho} \subset T_{\tau}$. Show that in our case

$$\begin{split} T_{\{0\}} &\hookrightarrow T_{\sigma_k}; \qquad (u,v) \mapsto (uv^{-k},u^{-1}v^{k+1}) =: (u_k,v_k) \\ T_{\rho_k} &\hookrightarrow T_{\sigma_k}; \qquad (u_k,v_k) \mapsto (u_k,v_k) \\ T_{\rho_{k+1}} &\hookrightarrow T_{\sigma_k}; \qquad (u_{k+1},v_{k+1}) \mapsto (v_k^{-1},u_kv_k^2). \end{split}$$

(f) Define \mathcal{T}_{Σ} as $\left(\coprod_{\tau \in \{0,\sigma_k,\rho_k\}} T_{\tau}\right) / \sim$, where two points in $x_1 \in T_{\varsigma_1}$ and $x_2 \in T_{\varsigma_2}$ are related if there exists a subcone $\varrho \subset \varsigma_1 \cap \varsigma_2$, such that $x_1 = x_2 \in T_{\varrho}$.

We have an embedding $T_{\{0\}} = (\mathbb{C}^*)^2 \hookrightarrow T_{\Sigma}$. Show that $T_{\Sigma} \setminus (\mathbb{C}^*)^2$ is a chain of $C_i \cong \mathbb{P}^1$ with $i \in \mathbb{Z}$, and such that $C_i \cap C_{i+1} = \{\text{pt}\}$. Show that the generator of P'' acts on the chain of \mathbb{P}^1 by sending C_i to C_{i+n} .

Then we can glue

$$S^0(n) \cup_{W/P} X_{\Sigma}/P''$$
,

where $X_{\Sigma} = \overline{e(W)}$, and we have added a n-gon as a fiber over ∞ , consisting of n curves $C_i \cong \mathbb{P}^1$.

(e) Show that in the quotient T_{Σ}/P'' , we have $C_i^2 = -2$.

Since there is a transformation $g \in SL(2,\mathbb{Z})$ which maps a cusp in X(n) to ∞ , we can repeat this procedure to obtain a compactification S(n) of $S^0(n)$ fibred over X(n) such that its singular fibres over each of the cusps of X(n) are n-gons of smooth rational (-2)-curves.

(f) Consider the Hesse-pencil: $C_{\lambda}: x_0^3 + x_1^3 + x_2^3 - 3\lambda x_0 x_1 x_2 = 0$. Show that when C_{λ} is singular, then it is a triangle. this pencil has 9 fixed points. S(3) is the blow-up of \mathbb{P}^2 on the 9 fixed points of the pencil. The induced map is the fibration $S(3) \to \mathbb{P}^1 \cong X(3)$.

Exercise 10. Semi-abelian varieites. A semi-abelian variety is an algebraic group G, which is the extension of an abelian variety A and a torus $T \cong (\mathbb{C}^*)^r$. Such group G is connected and commutative, and T is its unique maximal subtorus. The dimension of the torus T is called the rank of G, and A = G/T its abelian part.

(a) Let $X := \operatorname{Hom}(T, \mathbb{C}) \cong \mathbb{Z}^r$ be the character group of the torus T. Show that the extensions $1 \to T \to G \to A \to 1$ are in 1-1-correspondence with the homomorphisms

$$X \to \operatorname{Pic}^0 A$$
.

- (b) Let $Z \in \mathbb{H}_2$ and consider the lattice $\Lambda = \bigoplus_{i=1}^4 \mathbb{Z}e_i$, where e_i are the columns of the matrix (Z, id) .
- (c) Consider the abelian surface $A_Z = \mathbb{C}^2/\Lambda$. Show that $A_Z = (\mathbb{C}^*)^2/(\mathbb{Z}e_1 + \mathbb{Z}e_2)$, where $\mathbb{Z}e_1 + \mathbb{Z}e_2$ acts on $(\mathbb{C}^*)^2$ via

$$e_1: (u,v) \mapsto (ue^{2\pi i z_{11}}, ve^{2\pi i z_{12}})$$
 and $e_2: (u,v) \mapsto (ue^{2\pi i z_{12}}, ve^{2\pi i z_{22}}).$

(d) Assume that $z_{22} \to \infty$. Then the action of e_2 is not free, but we can consider $G := \mathbb{C}^2/(\mathbb{Z}e_1 + \mathbb{Z}e_3 + \mathbb{Z}e_4)$. Show that

$$1 \to \mathbb{C}^* \to G \xrightarrow{\psi} E_{z_{11}} \to 1$$
, where $\psi([u, v]) = [u]$.

(e) Define $e := [z_{12}] \in E_{z_{11}}$. Show that the classifying morphism associated to the previous semi-abelian variety is

$$\mathbb{Z} \longrightarrow \operatorname{Pic}^0 E_{z_{11}}$$

 $1 \longmapsto \mathcal{O}_E(e-0)$

(f) Show that $G \subset \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(e-0))$ and we can consider the degenerate abelian surface as the quotient that identifies the points x of the zero section, with the points x + e of the infinity section.

Exercise 11. Hodge line bundle and canonical bundle on A_q . Assume that $g \ge 2$.

(a) Let $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{Sp}(2g, \mathbb{Z})$. Show that the holomorphic map $(M, Z) \mapsto f(M, Z) = \det(\gamma Z + \delta)^k$ satisfies the cocycle condition (it is a factor of automorphy),

$$f(M \cdot M', Z) = f(M, M'(Z)) f(M', Z)$$
 for all $M, M' \in \operatorname{Sp}(2q, \mathbb{Z})$ and $Z \in \mathbb{H}_q$.

Since $\Gamma(3) = \{M \in \operatorname{SL}(2,\mathbb{Z}) \mid M \equiv \operatorname{id} \mod 3\} \subseteq \operatorname{Sp}(2g,\mathbb{Z})$ acts freely on \mathbb{H}_g , this factor of automorphy defines a line bundle on $\mathcal{A}_g(3) := \mathbb{H}_g/\Gamma(3)$, whose sections are holomorphic functions such that

$$F(M(Z)) = \det(\gamma Z + \delta)^k F(Z)$$
 for all $M \in \Gamma(3)$ and $Z \in \mathbb{H}_q$

((scalar) weight k modular forms for the full 3-level structure).

We can define the Hodge vector bundle as $\mathcal{E} := \pi_*(\Omega^1_{\mathcal{X}_g/\mathcal{A}_g})$ on \mathcal{A}_g (in order to do that, we have to pretend that $\operatorname{Sp}(2g,\mathbb{Z})$ acts freely on \mathbb{H}_g , or use stacks -see Exercise 8). So, the fiber of the Hodge vector bundle over a point $[X] \in \mathcal{A}_g$ is the g-dimensional space of holomorphic 1-forms on X. We denote by $L := \det \mathcal{E}$ the corresponding determinant Hodge line bundle.

(b) We can lift the Hodge bundle through the quotient $p: \mathbb{H}_g \to \mathcal{A}_g$. Then, fiber of the Hodge bundle over Z is $p^*\mathcal{E}|_Z = H^0(X_Z, \Omega^1_{X_Z}) = \mathbb{C} dz_1 \oplus \ldots \oplus \mathbb{C} dz_g$ (i.e., \mathcal{E} lifts to a trivial vector bundle on \mathbb{H}_g , but it is not trivial on the quotient \mathcal{A}_g). Let $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{Sp}(2g, \mathbb{Z})$. Show that the isomorphism

$$H^0(X_Z,\Omega^1_{X_Z}) \to H^0(X_{MZ},\Omega^1_{X_{MZ}})$$

between complex g-vector spaces is given by the matrix $(\gamma Z + \delta)^{-1}$. This shows that the hodge line bundle L is the bundle of (scalar) modular forms of weight 1.

(c) To compute the canonical class of \mathcal{A}_g , consider the explicit volume form $\omega(Z) := \bigwedge_{i \leq j} Z_{ij}$ on \mathbb{H}_g . Show that $\omega(MZ) = \det(\gamma Z + \delta)^{-g-1}\omega(Z)$, which means that the canonical divisor is $K_{\mathcal{A}_g} = (g+1)L$.

Exercise 12. Picard group of A_g . Consider A_g the moduli space of principally polarized abelian varieties.

- (a) Show that there are at most countably many proper analytic subvarieties A_i in the moduli space \mathcal{A}_g such that $(X,\Theta) \in \mathcal{A}_g \setminus \bigcup_i A_i$ has endomorphism ring \mathbb{Z} . (**Hint:** consider for any $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in M(2g \times 2g, \mathbb{Z})$ the equation $Z(\gamma Z + \delta) = \alpha Z + \beta$ in \mathbb{H}_g .)
- (b) Assume that the locus in \mathcal{A}_g of principally polarized abelian varieties having endomorphism ring greater that \mathbb{Z} has codimension 2. Then, prove that the smooth locus \mathcal{A}_g^0 of \mathcal{A}_g can be characterized as locus of principally polarized abelian varieties (A,Θ) having automorphism group $\{\pm 1\}$ (i.e. $\operatorname{Aut}_{ppav}(A,H)=\{\pm 1\}$). (**Hint:** use that $\mathcal{A}_{g,n}$ the moduli space of principally polarized abelian structure with level n-structure is smooth when $n \geq 3$, i.e $\Gamma_g(n) := \{\gamma \in \operatorname{Sp}(2g,\mathbb{Z}) \mid \gamma \equiv \operatorname{id}_{2g}(mod\ n)\}$ acts freely on \mathbb{H}_q if $n \geq 3$.)
- (c) Assume that $g \ge 4$. Assuming that $H_1(\mathcal{A}_g^0, \mathbb{Z}) = 0$ and $H^2(\mathcal{A}_g^0, \mathbb{Z}) \cong \mathbb{Z}$, show that $\operatorname{Pic}(\mathcal{A}_g^0) \cong \mathbb{Z}$. (**Hint**: Use that for $g \ge 4$, the boundary of the Satake compactification has codimension greater than 1.)
- (d) Show that $H_1(\mathcal{A}_g^0, \mathbb{Z}) = 0$ and $H^2(\mathcal{A}_g^0, \mathbb{Z}) \cong \mathbb{Z}$ (Assume, the following result of Borel: for any subgroup $\Gamma \subset \operatorname{Sp}(2g, \mathbb{Z})$ of finite index, we have $H^*(\Gamma, \mathbb{Q}) = \mathbb{Q}[c_2, c_6, c_{10}, \ldots]$ up to degree $\leq g-2$.)

REFERENCES

- [1] V. Alexeev: Complete moduli in the presence of semiabelian group action. Annals of Math. 155 (2002), 611-708.
- [2] C. Birkenhake, H. Lange: Complex abelian varieties, G. m. W. 302, Springer-Verlag, 1992.
- [3] G. Faltings, C-L. Chai: Degeneration of abelian varieties. Ergebnisse der Math. 22. Springer Verlag 1990.
- [4] G. van der Geer: Siegel moduli forms, preprint, The 1-2-3 of Modular forms, Springer Verlag.
- [5] G. van der Geer, B. Moonen: Abelian varieties. Manuscript at http://staff.science.uva.nl/~bmoonen/boek/BookAV. html
- [6] S. Grushevsky: Geometry of A_q and its compactifications. To appear in Proc. Symp. Pure Math.
- [7] K. Hulek: Degenerations of abelian varieties. Pragmatic Summer School, July 2000.
- [8] K. Hulek, C. Kahn, S. Weintraub, Moduli spaces of abelian surfaces: Compactification, degenerations and theta functions. de Gruyter 1993.
- [9] K. Hulek, G.K. Sankaran: The geometry of Siegel modular varieties. Higher dimensional birational geometry (Kyoto, 1997), p. 89–156, Adv. Stud. Pure Math., 35, Math. Soc. Japan, Tokyo, 2002.
- [10] H. Klingen: Introductory lectures on Siegel modular forms. Cambridge Studies in advanced mathematics 20. Cambridge University Press 1990.
- [11] S. Mukai, Duality between D(X) and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175.
- [12] D. Mumford: On the Kodaira dimension of the Siegel modular variety. Algebraic geometry—open problems (Ravello, 1982), p. 348–375, Lecture Notes in Math., 997, Springer, Berlin, 1983.
- [13] D. Mumford: Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5 Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London 1970.
- [14] M. Olsson, Compactifying moduli spaces for abelian varieties, Springer Lecture Notes in Math. 1958, viii+278 pp. (2008).
- [15] J.-P. Serre: Rigidité du foncteur de Jacobi d'échelon $n \geqslant 3$. Appendice d'exposé 17, Séminaire Henri Cartan 13e année, 1960/61.

[16] R. Smith, R. Varley: Components of the locus of singular theta divisors of genus 5. Algebraic Geometry Sitges (Barcelona) 1983. Lecture Notes in Mathematics 1124.